
Bayesian Analysis of Multinomial
N-mixture models in BUGS

Multinomial N-mixture in BUGS

• Bayesian analysis of multinomial observation models does not
pose any novel technical difficulty.

• WinBUGS JAGS (and other BUGS) have a multinomial
distribution function.

• In principle we just specify the multinomial/Poisson model
directly:

y[i,]<-c(y[i,],NA) # missing value for "not captured"

Then, in WinBUGS, do this:

y[i,] ~ dmulti(probs[i,], N[i])

N[i] ~ dpois(lambda[i])

Multinomial N-mixture in BUGS

y[i,]<-c(y[i,],NA) # missing value for "not captured"

Then, in WinBUGS, do this:

y[i,] ~ dmulti(probs[i,], N[i])

N[i] ~ dpois(lambda[i])

However, this construction doesn't work (in WinBUGS). Cannot
have “random” sample size in multinomial distribution. (not so
Binomial!)

Approaches to Bayesian analysis

We have 3 options for analysis in BUGS:

(1) Multinomial/Poisson mixture has Poisson marginals. Use the

 Poisson marginal. (this is too easy!).

(2) Can use a “data augmentation'' trick (Converse and Royle

 2012) with individual-level encounter histories.

(3) Can express the model in terms of the conditional

 multinomial observation model. i.e., condition on 𝑛𝑖 = number

 of individuals captured at site 𝑖 -- the “3 part model”.

Topics in Bayesian analysis

• 3-part model

• Goodness-of-fit

• Model selection

• Poisson model

• Poisson model with random effects

• Data Augmentation

The 3-part (conditional multinomial)
model

Statistically equivalent formulation of the
multinomial N-mixture – a reparameterization:

 1. 𝒚𝑖| 𝑛𝑖~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖 , 𝝅𝑖
𝑐)

 2. 𝑛𝑖~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑁𝑖 , 1 − 𝜋0

 3. 𝑁𝑖~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆𝑖

 where

 𝝅𝑖
𝑐=

𝜋ℎ

1−𝜋0

 model {

Prior distributions

p0 ~ dunif(0,1)

alpha0 <- logit(p0)

alpha1 ~ dnorm(0, 0.01)

beta0 ~ dnorm(0, 0.01)

beta1 ~ dnorm(0, 0.01)

beta2 ~ dnorm(0, 0.01)

beta3 ~ dnorm(0, 0.01)

for(i in 1:M){ # Loop over sites

 # Conditional multinomial cell probabilities

 pi[i,1] <- p[i]

 pi[i,2] <- p[i]*(1-p[i])

 pi[i,3] <- p[i]*(1-p[i])*(1-p[i])

 pi[i,4] <- p[i]*(1-p[i])*(1-p[i])*(1-p[i])

 pi0[i] <- 1 - (pi[i,1] + pi[i,2] + pi[i,3] + pi[i,4])

 pcap[i] <- 1 - pi0[i]

 for(j in 1:4){

 pic[i,j] <- pi[i,j] / pcap[i]

 }

 # logit-linear model for detection: understory cover effect

 logit(p[i]) <- alpha0 + alpha1 * X[i,1]

 # Model specification, three parts:

 y[i,1:4] ~ dmulti(pic[i,1:4], n[i]) # component 1 uses the

 # conditional cell probabilities

 n[i] ~ dbin(pcap[i], N[i]) # component 2 is a model

 # for the observed sample size

 N[i] ~ dpois(lambda[i]) # part 3 is the process model

log-linear model for abundance: UFC + TRBA + UFC:TRBA

 log(lambda[i])<- beta0 + beta1*X[i,1] + beta2*X[i,2] +
beta3*X[i,2]*X[i,1]

}

}

 Have to write out
the cell
probabilities
explicitly

Goodness-of-fit Using Bayesian p-values

• It is natural to think of “overall fit” as having two
components: How well does the encounter model fit?
How well does the abundance model fit?

• Can we evaluate them independently? The 3-part
model leads to a natural formulation of this dual fit
assessment strategy.

– Fit of multinomial model conditional on 𝑛𝑖 .

– Fit of the model for 𝑛 – should be sensitive to wrong
model for because 𝐸 𝑛𝑖 = 𝜆𝑖𝑝𝑐𝑎𝑝 contains the variation

in 𝑁𝑖 (and spatial variation in 𝑝)

Implementation of 2-part GoF idea

for(i in 1:nsites){

 ncap.fit[i] ~ dbin(pcap[i],N[i])

 y.fit[i,1:4] ~ dmulti(muc[i,1:4],ncap[i])

 for(t in 1:4){

 e1[i,t]<- muc[i,t]*ncap[i] # Expected value

 resid1[i,t]<- pow(pow(y[i,t],0.5)-pow(e1[i,t],0.5),2)

 resid1.fit[i,t]<- pow(pow(y.fit[i,t],0.5) - pow(e1[i,t],0.5),2)

 }

 e2[i]<- pcap[i]*lambda[i] # Expected value

 resid2[i]<- pow(pow(ncap[i],0.5) - pow(e2[i],0.5),2)

 resid2.fit[i]<- pow(pow(ncap.fit[i],0.5) - pow(e2[i],0.5),2)

}

fit1.data<- sum(resid1[,])

fit1.post<- sum(resid1.fit[,])

fit2.data<- sum(resid2[])

fit2.post<- sum(resid2.fit[])

Goodness-of-fit Using Bayesian p-values

> mean(out$sims.list$fit1.post>out$sims.list$fit1.data)

[1] 0.7076667

> mean(out$sims.list$fit2.post>out$sims.list$fit2.data)

[1] 0.4556667

No lack of fit is indicated…?????

Goodness-of-fit: Research Question

The power of any particular fit statistic to any particular
departure from the model is unknown and no studies
have been published.

Model Selection in BUGS: Computing
posterior model probabilities

 Basic idea: Expand model to include a set of binary indicator variables 𝑤𝑘 = 1 if
variable 𝑘 is in the model (Kuo and Mallick 1998)

Model selection ≡ estimating Pr (𝑤𝑘 = 1). (R&D Book, sec. 3.4.3)

Expanded linear predictor:
log 𝜆𝑖 = 𝛽0 + 𝑤1𝛽1𝑥𝑖1 + 𝑤2𝛽2𝑥𝑖2 + 𝑤1𝑤2𝑤3𝑥𝑖1𝑥𝑖2

 𝑤1~ 𝐵𝑒𝑟𝑛 0.5

 𝑤2~ 𝐵𝑒𝑟𝑛 0.5

 𝑤3~ 𝐵𝑒𝑟𝑛(0.5)

Models are characterized by the sequence 𝑤1, 𝑤2, 𝑤1𝑤2𝑤3

• Estimate functions of 𝑤𝑘 e.g., Pr 𝑤𝑘 = 1

• Sensitivity to prior. Posterior model probabilities are sensitive to choice of prior
distribution on 𝛽. See Link and Barker (2010).

Model Selection in BUGS: Computing
posterior model probabilities

 model {

beta0 ~ dnorm(0,.1)

Beta1 ~ dnorm(0,.1)

beta2 ~ dnorm(0,.1)

beta3 ~ dnorm(0,.1)

w1 ~ dbern(.5)

w2 ~ dbern(.5)

w3 ~ dbern(.5)

p0~dunif(0,1)

for(i in 1:nsites){

 p[i]<- p0 # could have covariates here

 mu[i,1] <- p[i]

 mu[i,2] <- p[i]*(1-p[i])

 mu[i,3] <- p[i]*(1-p[i])*(1-p[i])

 mu[i,4] <- p[i]*(1-p[i])*(1-p[i])*(1-p[i])

 pi0[i]<- 1 - mu[i,1]-mu[i,2]-mu[i,3]-mu[i,4]

 pcap[i]<-1-pi0[i]

 for(j in 1:4){

 muc[i,j] <- mu[i,j]/pcap[i]

 }

 y[i,1:4] ~ dmulti(muc[i,1:4],ncap[i])

 ncap[i] ~ dbin(pcap[i],N[i])

 N[i] ~ dpois(lambda[i])

 log(lambda[i])<- beta0 + w1*beta1*X[i,1] + w2*beta2*X[i,2] + w1*w2*w3*beta3*X[i,2]*X[i,1]

}

Model Selection in BUGS: Computing
posterior model probabilities

 Post-processing to obtain model frequencies -- combine the
unique values of (𝑤1, 𝑤2, 𝑤3) into distinct models. i.e., (1,0,0),
(0,1,0), (1,1,0), etc.. Note: When 𝑤3 represents an interaction
we want to use (𝑤1, 𝑤2, 𝑤1𝑤2𝑤3) so that the model has the
interaction only if the main effects are present.

w1<-out$sims.list$w1

w2<-out$sims.list$w2

new "w3" =1 only if the interaction is in the

model, means w1 = 1 AND w2=1

w3<-out$sims.list$w3 * w1 * w2

mod<-paste(w1,w2,w3)

Sensitivity to prior distributions

Prior: beta ~ dnorm(0,.1)

> table(mod)

mod

0 0 0 0 1 0 1 0 0 1 1 0 1 1 1

 2176 517 300 6 1

Prior: beta ~ dnorm(0,.01)

0 0 0 0 1 0 1 0 0 1 1 0

 2760 154 78 8

Prior: beta ~ dnorm(0,.2)

0 0 0 0 1 0 1 0 0 1 1 0 1 1 1

 2006 637 340 16 1

Model selection summary

Model selection based on posterior model
probabilities, when models represent different
fixed covariates, is easy to accomplish using
variable weights.

The prior makes a difference, so be careful.

Poisson formulation of the model

If 𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) then the marginal distribution
of the data is also Poisson!

 𝑦𝑖ℎ = frequency of encounter history ℎ at site 𝑖

𝑦𝑖ℎ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜋𝑖ℎ𝜆𝑖

 i.e., model is just a Poisson GLM!

model {

Prior distributions

p0 ~ dunif(0,1)

alpha0 <- logit(p0)

alpha1 ~ dnorm(0, 0.01)

beta0 ~ dnorm(0, 0.01)

beta1 ~ dnorm(0, 0.01)

beta2 ~ dnorm(0, 0.01)

beta3 ~ dnorm(0, 0.01)

for(i in 1:M){

 # logit-linear model for detection: understory cover effect

 logit(p[i]) <- alpha0 + alpha1 * X[i,1]

 # log-linear model for abundance: UFC + TRBA + UFC:TRBA

 log(lambda[i])<- beta0 + beta1*X[i,1] + beta2*X[i,2] + beta3*X[i,2]*X[i,1]

 # Poisson parameter = multinomial cellprobs x expected abundance

 pi[i,1] <- p[i] * lambda[i]

 pi[i,2] <- p[i] * (1-p[i]) * lambda[i]

 pi[i,3] <- p[i] * (1-p[i]) * (1-p[i]) * lambda[i]

 pi[i,4] <- p[i] * (1-p[i]) * (1-p[i]) * (1-p[i]) * lambda[i]

 for(j in 1:4){

 y[i,j] ~ dpois(pi[i,j])

 }

 # Generate predictions of N[i]

 N[i] ~ dpois(lambda[i])

}

Poisson model with random effects

• [see R script]

Data Augmentation (DA)
Motivation

• ovenbird, ALFL, MHB data are all classical “capture-recapture”
data/models but for those we formulated the model in terms
of encounter frequencies for each site (a multinomial vector
that is site specific). We modeled the latent 𝑁𝑖 variables as
Poisson (or NB, etc..)

• In those models there is no INDIVIDUAL IDENTITY (only a site
identity)

• DA gives us an alternative formulation of the model that
preserves individual identity so that we may model individual
effects in addition to site effects

Data Augmentation (DA)
Conceptual approach

• The idea of DA is to stack all of the site-specific individual encounter history
data sets into one large data set (the “stacked data set”) and treat the data
set as a single capture-recapture data set. Now 𝑁 is the population size of
the “pooled population”. That is, the population size among all sampled
sites.

y <- as.matrix(alfl[,c("interval1","interval2","interval3")])

 head(y)

 interval1 interval2 interval3

[1,] 1 1 1 # Each row = individual

[2,] 1 0 1 # ALL SITES POOLED

[3,] 0 1 1

[4,] 1 1 1

[5,] 0 1 1

[6,] 1 0 1

site <- as.numeric(alfl$id)

head(site)

[1] 1 1 2 2 2 2

Data Augmentation (DA)

Conceptual approach

• What is the model for the “stacked” data set?

• Main technical challenge: 𝑁 is unknown! DA is meant
primarily to deal with the unknown 𝑁 problem.

• First we switch topics and talk about analyzing “basic”
capture-recapture models using DA to make the core
methodological idea clear.

Sampling a closed population
A typica l c losed
populat ion sampling
data set :

Ind. | - occasion -|

 1 0 1 0 1 1

 2 0 0 1 0 0

 3 1 1 0 0 0

 4 0 0 1 1 0

 5 0 1 1 1 1

 6 0 0 1 1 0

 7 1 1 1 1 1

 8 1 0 1 1 0

Here we sampled a population of size
𝑁 repeatedly (J= 5 times) and
observed 𝑛 = 8 individuals. We wish
to estimate 𝑁. How do we do that?

Models M0, Mh, Mt, Mb, Mbh, Mth,
Mbth, Individual covariate models
Mx, etc..

This is just one “Site” (sampling of
one population)

If N is known, CR model is just a logistic
regression:

model {

p~dunif(0,1)

for (i in 1:N){

 for(j in 1:J){

 y[i,j]~dbern(p)

 }

 }

}

Bayesian analysis of closed capture-
recapture models: The basic problem of

variable dimension data/parameters

But N is not known. Conceptually we
could just put a prior on N, e.g., N ~
Dunif(0, 1000), and analyze the model
using standard methods of MCMC

However, the size of the data set, N, is a
parameter of the model so as N is
updated in the MCMC algorithm the
size of the data set must change. Can’t
do this in WinBUGS/JAGS.

• Prior distributions:

– N ~ Dunif(0, M), for M some big number (Fixed)

– p ~ uniform(0,1)

• Not amenable to a naïve implementation by MCMC (esp in
BUGs/JAGS) because N, a parameter, which is the size of
the data set, which has to be fixed! Also “variable
dimension parameter space”

– Therefore:

• RJMCM/”Trans-dimensional” Gibbs sampling
• Data augmentation <- easier, can be done in BUGS

Bayesian analysis of closed population
models

• N ~ Dunif(0,M) implies a “data set” with M-n all-zero encounter
histories. Some of the y=0 observations correspond to real
individuals and some of them do not.

– Same as:

• 𝑁|𝜓 ~ 𝐵𝑖𝑛 𝑀, 𝜓 ## KEY POINT!
• 𝜓 ~ uniform(0,1)

• Implementation: We add too many zeroes to the dataset – creating a

zero-inflated version of the known-N dataset

• Model for the augmented data set is a zero-inflated binomial

• THIS IS AN OCCUPANCY MODEL!

Data augmentation: Heuristic

 Occupancy data

Site |- occasion -|

 1 0 1 0 1 1

 2 0 0 1 0 0

 3 1 1 0 0 0

 4 0 0 1 1 0

 5 0 1 1 1 1

 6 0 0 1 1 0

 7 1 1 1 1 1

 8 1 0 1 1 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 M 0 0 0 0 0

Zeros are observed. Allocate
zeros to “fixed” and
“sampling”

Heuristic development

Closed pop. sampling

Ind. | - occas ion -|

 1 0 1 0 1 1

 2 0 0 1 0 0

 3 1 1 0 0 0

 4 0 0 1 1 0

 5 0 1 1 1 1

 6 0 0 1 1 0

 7 1 1 1 1 1

 8 1 0 1 1 0

Zeros are NOT
observed. How many
“sampling” zeros are
there?

 Closed pop. + DA

Ind. | - occas ion -|

 1 0 1 0 1 1

 2 0 0 1 0 0

 3 1 1 0 0 0

 4 0 0 1 1 0

 5 0 1 1 1 1

 6 0 0 1 1 0

 7 1 1 1 1 1

 8 1 0 1 1 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

 M 0 0 0 0 0

Bound N <= M where
M is f ixed.

Treat Model M0 as an
occupancy model .

• DA makes capture-recapture models the same as
occupancy models.

• The parameter 𝜓 replaces population size N. They
are related as follows: 𝑁 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑀, 𝜓

• Occupany model is implemented at the individual
level by introducing latent occupancy state
𝑧𝑖~ 𝐵𝑒𝑟𝑛 𝜓

DA and occupancy models

• N ~ Unif(0,M)
• Same as:

– N|psi ~ Bin(M, psi) M = fixed
– psi ~ uniform(0,1)

This 2-part prior implies: N ~ Uniform(0,M) , standard distribution
theory result

• Same as:
– z[i] ~ Bern(psi) for i=1,2,…,M “data augmentation variables”
– y[i] ~ Bern(p*z[i])
– psi ~ dunif(0,1) “data augmentation parameter”

• The augmented data create a super-population of
individuals available to be “recruited” by the MCMC
algorithm.

Why can we do this?

2 formulations of Model M0 in BUGS:

Fit model M0 in BUGS/JAGS using DA

 model {

psi~dunif(0, 1)

p~dunif(0,1)

for (i in 1:M){

 z[i]~dbern(psi)

 tmp[i]<-p*z[i]

 y[i]~dbin(tmp[i] ,K)

 }

N<-sum(z[1:M])

}

model {

psi~dunif(0, 1)

p~dunif(0,1)

for (i in 1:M){

 z[i]~dbern(psi)

 for(k in 1:K){

 tmp[i,k]<-p*z[i]

 y[i ,k]~dbin(tmp[i ,k],1)

 }

 }

N<-sum(z[1:M])

}

Encounter frequencies Binary encounter events

Data Augmentation (DA)

Analysis of ALFL data using DA

 y <- as.matrix(alfl[,c("interval1","interval2","interval3")])

 head(y)

 interval1 interval2 interval3

[1,] 1 1 1 # Each row = individual

[2,] 1 0 1 # ALL SITES POOLED

[3,] 0 1 1

[4,] 1 1 1

[5,] 0 1 1

[6,] 1 0 1

site <- as.numeric(alfl$id)

head(site)

[1] 1 1 2 2 2 2

Work session

• Analysis of the ALFL data by data
augmentation

DA for site-structured models

• Change of notation!!!

• If we have data classified by both site and
individual… we need a new indexing scheme

– 𝑖 = individual (not site)

– 𝑠 = site

DA for site-structured models

• DA: The key idea of DA is to preserve an individual-level
formulation of capture-recapture models which can be
analyzed easily by MCMC (i.e., in BUGS).

• DA: we analyze the “stacked” data set. Take the data set
from each site and pile them up on top of each other.

• We also have site-structured data.
– Introduce an individual covariate 𝑔 𝑖 (𝑔 for “group”) which

determines the site membership of each individual 𝑖

– In BUGS: 𝑔 𝑖 ~ 𝑑𝑐𝑎𝑡(𝑝𝑟𝑜𝑏𝑠[])

DA for site-structured models

• We also have site-structured data.

– Introduce an individual covariate 𝑔 𝑖 (𝑔 for
“group”) which determines the site membership of
each individual 𝑖

– In BUGS: 𝑔 𝑖 ~ 𝑑𝑐𝑎𝑡(𝑝𝑟𝑜𝑏𝑠[])

• When we use DA to analyze models the “site
membership” of individuals appears as a
categorical individual covariate

DA for site-structured models

• Individual 𝑠𝑖𝑡𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒: 𝑔 𝑖 ~ 𝑑𝑐𝑎𝑡(𝑝𝑟𝑜𝑏𝑠[])

• What is 𝑝𝑟𝑜𝑏𝑠[] ????

• Derives from the assumption for 𝑁𝑠

DA for site-structured models

The end

